

A PREEMINENT RESEARCH UNIVERSITY 基于寿命周期经济和环境影响的沥 青路面罩面策略分析 (Asphalt Pavement Overlay Policy Considering Life-Cycle Economic and Environmental Costs)

Qing Lu, Chunfu Xin

ITASC 2022

Outline

- Introduction and Objective
- Development of Pavement Roughness Models
- Life Cycle Environmental and Economic Impacts of Various Overlay Strategies
- Summary
- Acknowledgment

Introduction

- Pavement is a critical component of transportation infrastructure
 - support more than 9 trillion tonne-kilometers of freight and more than 15 trillion kilometers passenger trip around the world every year
 - Deteriorate over time with traffic
- Asphalt overlay is the most prevalent maintenance and rehabilitation (M&R) strategy
 - Selection and timing traditionally based on LCCA
 - Environmental impact not considered

Objective

- Incorporate both economic and environmental cost considerations in pavement (asphalt) overlay strategy selection
 - Quantify the effect of asphalt overlay design on long-term pavement roughness progression
 - Evaluate the life-cycle environmental and economic impacts of different overlay strategies
 - Optimize pavement overlay policy for environmental and economic sustainability

Pavement Roughness Models

Pavement Roughness Models

- Pavement roughness, in terms of International Roughness Index (IRI), is used as a primary indicator of pavement performance for M&R decisions
- In the literature: primarily a function of pavement age, limited in the scope of data and variables considered
 - Raymond et al. (2003) developed simple linear regression models between asbuilt IRI and IRI before overlay
 - Irfan (2010) developed different IRI models for thin hot mix asphalt (HMA) overlay, functional HMA overlay, and structural HMA overlay separately with 5-year data in Indiana. Overlay design and existing structure factors not considered.
 - Khattak et al. (2014) developed a post-overlay IRI progression model with data from 170 asphalt overlay projects in Louisiana. Existing structure factors and distresses not considered.

Pavement Roughness Models

- Two models developed in this study
 - IRI drop model due to overlay
 - random parameters linear regression model
 - Post-overlay IRI progression model
 - random effects linear regression model corrected with first-order autocorrelation
- Pavement data source
 - Federal Highway Administration (FHWA) long-term pavement performance (LTPP) database
 - SPS-3 (Preventive Maintenance), SPS-5 (Rehabilitation), and GPS-6 (AC Overlay)

Distribution of LTPP asphalt overlay projects

9/34

IRI Drop Model due to Overlay

• Multiple linear regression

 $IRI_{i}^{d} = \beta_{0} + \beta_{1}X_{i1} + \ldots + \beta_{p}X_{ip} + \varepsilon_{i}$

where, IRI_{i}^{d} is IRI drop of overlay project i

 To address the unobserved heterogeneity issue, some parameters (j) are allowed to vary across pavement sections (i)

$$\beta_{ij} = \beta_j + \varphi_{ij}$$

IRI Drop Model due to Overlay

Variable description	Coefficient	t-Statistic
Constant	-40.5963	-15.83
Asphalt overlay thickness (inches)	1.3479	3.22
Pre-overlay IRI (inches/mile)	0.7473	36.86
Asphalt milling indicator × pre-overlay IRI (inches/mile)	0.0708	5.33
Endogenous overlay indicator × pre-overlay IRI (inches/mile)	0.0539	4.19
(standard deviation σ_j for the random coefficient)	(0.0613)	(6.08)
North central region indicator × pre-overlay IRI (inches/mile)	0.0745	3.91
Pre-overlay pavement relative fatigue cracking area (%)	0.1987	3.19
Pre-overlay severe pavement rutting indicator	-3.912	-2.57
Number of observations	270	
R-squared	0.9070	
Adjusted R-squared	0.9045	

Post-overlay IRI Progression Model

- Random effect linear regression model
 - Lagrange Multiplier (LM) test showed it is better than the pooled OLS model
- The first-order time-series correlation of the error term was detected (correlation coefficient of 0.66) and corrected
- Estimated with feasible generalized least squares (FGLS) method

Post-overlay IRI Progression Model

 After estimation, the average value of IRI after t overlay years can be expressed as

$$\begin{split} \widehat{IRI_{it}} \\ &= \widehat{IRI_{i0}} \times exp \left[\begin{pmatrix} -0.0025Thk + 0.0594Df - 0.0023Sn - 0.0161Bd \\ +0.0034Fn - 0.0030Dn + 0.0056Ft + 0.0103Es \\ +0.0062Wf + 0.0731Mt + 0.0105Fz \end{pmatrix} \times t \right] \end{split}$$

where *Thk* is overlay thickness (inches), *Df* is the average deflection (mm), *Sn* is a high structural number indicator, *Bd* is bound base indicator, *Fn* is fine-grained subgrade indicator, *Dn* is subsurface drainage indicator, *Ft* is extensive-fatigue-cracking indicator, *Es* is annual average daily ESAL (10⁶), *Wf* is wet freeze climate zone indicator, *Mt* is average daily maximum temperature in July (100°C), *Fz* is annual average freezing index (1000°C·days). Adjusted R² of model estimation is 0.58.

Discussion of IRI Model Results

- Asphalt overlay design factors
 - Overlay thickness

- Existing pavement performance
 - has significant effect on overlaid pavement roughness drop and progression
 - IRI drop
 - Factors with positive impact: IRI before overlay, severe fatigue
 - Factor with negative impact: severe rutting
 - IRI progression
 - Severe fatigue cracking before overlay leads to quicker progression
 - IRI before overlay and severe rutting have no significant impact

- Existing pavement structure
 - has significant effect on overlaid pavement roughness progression rate
 - Structures with lower roughness progression rate
 - Asphalt or cement treated subbase
 - Subsurface drainage design
 - Coarse-grained subgrade soil

- Traffic and environmental characteristics
 - has significant effect on overlaid pavement roughness progression rate
 - Significant factors that promote roughness progression rate
 - AADTT
 - Wet-freeze climate zone
 - Annual average freeze index
 - Average daily maximum temperature in July

Life Cycle Environmental and Economic Impacts of Different Pavement Overlay Strategies

Case Study Goal and Scope

- Goal: evaluate the environmental and economic impacts of different overlay strategies over a 40-year analysis period
 - 16 overlay strategies (4 thicknesses [2,4,6,8 inches]*2 milling [yes or no]* with 30% RAP [yes or no])
- Functional unit
 - A 10-km long, 3.7-m wide overlay system over the outer lane of an existing asphalt pavement in Florida environment

System definition for overlay projects

Constr

Category	Item Description	Value
	Interstate highways (1-yes, 0-no)	1
	Number of lanes in each traffic	2
	direction	
General	Speed limit (km/h)	120
information	Segment length (km)	10
	Main lane width (m)	3.7
	Inside shoulder width (m)	1.5
	Outside shoulder width (m)	2.5
	Structural course SP-12.5 thickness	4
Existing pavement structure	(inches)	
	Structural course SP-19.0 thickness	6
	(inches)	
	Lime-rock (LR) base course thickness	10
	(inches)	
	Subgrade type (1-coarse-grained	0
	subgrade, 0-fine-grined subgrade)	
	Subsurface drainage condition (1-	1
	good, 0-poor)	
	International roughness index (IRI)	170
	Area of fatigue cracking in 10-km	4
Existing pavement performance	lane (%)	
	Average rut depth in 10-km lane	8
	(mm)	

	Annual average daily traffic (AADT) (vehicles/day)	1700, 17,000 87,000
Traffic information	Percentage of trucks in AADT (%)	12
	Average truck factor: an equivalent number of 80-kN single axle load	1.3
	Annual traffic growth rate (%)	0
	Climate zone (1-wet freeze zone, 0-otherwise)	0
Climatic factors	Annual average rainfall (mm)	1300
	Annual average freeze index (°C*days)	0
	Annual average daily temperature (°C)	24
	Average daily maximum temperature in July (°C)	34
	Average daily minimum temperature in January (°C)	10
	Average distance from plant to site (km)	100
uction project information	Average distance from site to stockpile (km)	100
	Average distance from equipment depot to site (km)	100
	1 -7	/)

- - 2-in Milling & Overlay

- • - 4-in Milling & Overlay

30

2-in milling & asphalt overlay

2050

----- 🔺 ----

2045

6-in Milling & Overlay

8-in Milling & Overlay

40

2060

2055

Rehabilitation schedules and IRI trends

20/34

Integrated LCA-LCCA Model

LCA

- Environmental indicator
 - Global warming potential (GWP) (CO₂ equivalent)
 - Acidification potential (AP) (SO₂ equivalent)
 - Human health (HH) particulate (PM2.5 equivalent)
 - Smog potential (SP) (O₃ equivalent)
 - Total primary energy (TPE)
- Computation procedure / Data source
 - Material Module (Manufacturing of SP-12.5, SP-19, RS-1 / Athena Pavement LCA database/FDOT Basis of Estimate Manual)
 - Construction Module (Consumption of fuel [diesel])
 - Transportation Module (100 km distance from plant to cnstrctn sites)

Criteria air pollutants (CAP)

23/34

Computation procedure / **Data source (cnt'd)**

- Congestion Module
 - Lane capacity
 - Normal: 2200 v/h
 - Workzone: 1537 v/h
 - Vehicle (88% car/10% light-duty truck/2%heavy-duty truck)
 - Speed
 - Normal: 120 km/h
 - Workzone: 95 km/h (uncongested), 50 km/h (congested)
 - QuickZone software used to calculate delay, detour rate, and queue length
 - Fuel consumption and vehicle emissions models from the literature were used to quantify environmental impacts

$$Y_{total} = VMT_{queue}Y_{queue} + VMT_{workzone}Y_{workzone} + VMT_{det our}Y_{det our} - VMT_{normal}Y$$

where, Y is fuel usage or emission value

Computation procedure / Data source (cnt'd)

- Usage Module
 - Effect of pavement roughness on vehicle fuel consumption (Chatti and Zaabar's calibration of the HDM-4 model)
 - Difference of environmental impacts between driving on an overlaid pavement and on an ideally smooth pavement (IRI=63 inches/mile)

Computation procedure / **Qata source (cnt'd)**

- End-of-Life Module
 - Assuming pavement section remains in place at the end of analysis period
 - "Cut-off" allocation method assigning no environmental impacts

LCCA

- Analysis period: same as LCA (40 years)
- Discount rate: 3%
- Agency costs
 - material costs, equipment use fee, labor costs (lumped)
 - temporary traffic control (\$1000/day)
 - mobilization cost (2% project cost)
- User costs
 - vehicle operating costs (extra fuel consumption relative to smooth pavement)
 - user delay costs (car: \$11.58/hr, light truck: \$18.54/hr, heavy truck: \$22.31/hr)
 - vehicle crash costs (work zone: \$0.22/VMT; detour: \$0.15/VMT)

Overlay Scheme Designations

	Overlay Thickness (inches)	Milling Operation (1 [yes]	30% RAP
Scheme		or 0 [no])	(1 or 0)
1	2	1	0
2	2	1	1
3	2	0	0
4	2	0	1
5	4	1	0
6	4	1	1
7	4	0	0
8	4	0	1
9	6	1	0
10	6	1	1
11	6	0	0
12	6	0	1
13	8	1	0
14	8	1	1
15	8	0	0
16	8	0	1

Findings of LCA-LCCA of Case Study

- To minimize life cycle energy consumption and GHG emissions, the optimum overlay strategy is 4-in milling and asphalt overlay with 30% RAP.
- To minimize life cycle cost, the optimum overlay strategy is 2-in asphalt overlay with 30% RAP.
- AADT affects results significantly
 - Low traffic volume (e.g., AADT = 1700): material and construction modules dominate in LCA, agency cost dominates in LCCA
 - With increase of traffic volume, usage phase becomes more important in LCA and LCCA
- IRI trigger value also affects LCA and LCCA

Summary and Discussion

- Empirical models of pavement roughness drop and progression due to overlay were developed based on LTTP data.
- Case study of various overlay strategies evaluated by LCA and LCCA.
- To consider both economic and environmental costs in selecting optimal pavement rehabilitation strategies, a multi-objective optimization algorithm may be applied.

Acknowledgment

 The study is funded by a grant from the U.S. Department of Transportation's University Transportation Centers Program (Center for Transportation, Environment, and Community Health, i.e, CTECH).

A PREEMINENT RESEARCH UNIVERSITY

CENTER FOR TRANSPORTATION ENVIRONMENT AND COMMUNITY HEALTH