Rijkswaterstaat Ministry of Infrastructure and Water Management

POROUS ASPHALT CONCRETE 30 YEARS EXPERIENCE IN THE NETHERLANDS

Prof. Dr.ir. Sandra Erkens Principal Specialist Pavement Materials and Stuctures, Rijkswaterstaat Professor of Pavement Engineering Practice, TU Delft

8 October 2018

Content

- History
- Use of PA in NL
- PA performance
- PA Water Drainage
- Summary

History

 Porous Asphalt (PA) developed during 2nd World War in UK for air fields for safe landing and take off

When did the Dutch start with PA?

- In 1971 PA was rediscovered in NL. The first test site was on a provincial road in 1972.
- Continued by RWS for highways to reduce splash and spray and increase safety

The Dutch 'recently' changed policy; PA became the standard wearing course in 1987 by a decision of the minister of Transport. The reason: noise reduction

History

- 2005: two-layer PA allowed on motorways if cost-effective
- 2009: first PoroElasticRoadSurface (PERS) test site
- 2010: PA test sites with rejuvenators and steel fibers
- 2018: about 90% of our motorways have noise reducing pavements, 70% single-layer PA and 19% two-layer PA, 1% thin layer pavement

PA History

Advantages

Noise reduction No rutting problems!! During rainfall:

- no aqua planing
- reduction of splash and spray
- better visibility of markings
- higher capacity

Better quality of run off water High appreciation of car drivers! Comfortable

Use of PA

Area of management of Rijkswaterstaat Motorways

and the start

Main Highway

Pavements: 3.100 kms motorway

- 6.200 km one direction / 15.000 km lanes
- 1.260 km sliproads
- 45 rush hour lanes (approx. 100kms)

<u>Structures: 6.000 (also on mainwaterways)</u>

- 2.843 viaducts on highways
- 767 moveable and fixed bridges on highways
- 24 tunnels
- 33 ecoduct
- <u>DTM</u> (6 control centers, 108 DRIPS, 2.000 cameras)

• Area control

 winter ice, roadside and restplace management, lights, signage, guiding rails, noise barriers ...

Use of PA Area of management of Rijkswaterstaat

- <u>90% porous asphalt</u> concrete
 - mostly on mainroads
 - 70% PA
 - 20 % two-layer PA

• <u>10% dense asphalt</u> concrete

- mostly on sliproads
- ~3% of the mainroads have
- a technical exclusion
 - 9% AC
 - 3% SMA / other

TUDelft

Use of PA

Porous Asphalt in the Netherlands

Porous asphalt in the Netherlands

<u>PA 16</u>

< 50mm >

TLPA 25 mm top layer 4/8 45 mm 11/16

Application only if it is cost-effective noise reduction (i.e. saves costs of noise barriers)

Restrictions

- Where to use PA and where not
 - Principle: noise reduction everywhere
 - Unless: Technical reasons not to use PA
- If PA is not used on highways, the alternative is a dense wearing course => no noise reduction, usually requires extra investments in noise barriers
- Urban situations usually not suited for PA

Use of PA

Use of PA Restrictions (technical)

- Locations with high shear stresses (short maintenance intervals):
 - curves with radius < 150m, sliproads, roundabouts, junctions
- Radical changes in other parts of infrastructure:
 - structures <1995 extra layer of asphalt
- Regulations:
 - tunnels, test sites
- Road user experience
 - No 500m PA in between two stretches of non PA
 - Highly specific situations
- Non motorways in case of:
 - cross roads, traffic lights, slow (agricultural) traffic
- RWS area not being roads:
 - busstops, service areas, cycle paths

Service life

PA performance

performance	two-layer PA	single-layer porous asphalt	dense asphalt concrete (AC16)
Service life right lane	9 yrs	11 yrs	11 yrs
Service life left lane	13 yrs	17 yrs	17 yrs
Costs [€]	210%	135%	100%
Noise reduction	1 to 2 dB relative to single-layer porous asphalt	2 – 4 dB relative to AC	0,3 dB
ŤU Delft		Rijkswaterstaat	

Service life - Surface distresses

PA performance

Damage type	AC	PA
Ravelling	25	85
Cracking	40	10
Rutting + unevenness	30	3
Skid resistance	5	2
total	100	100

Dutch Climate

PA Water Drainage

October 28, 2018

Dutch Climate - precipitation

Rain in all seasons

Dutch Climate – temperature (2013)

Winter: High number of frost – thaw cycles

PA Water Drainage

Improved water drainability

PA Water Drainage

Rijkswaterstaat

October 28, 2018

Porous Asphalt

- Void content >20%
 - \rightarrow Improved water drainability
 - \rightarrow Improved water Retention

- Stone skeleton

- \rightarrow Improved resistance against deformation
- \rightarrow Lower resistance against shear stresses

PA Water

Drainage

October 28, 2018

Water transport

October 28, 2018

PA Water Drainage

ŤUDelft

RI RI

Improved water drainability: effects

Delft

Drainage

- effect compensated due to higher speed on high speed lanes
- Minimize number of "Porous Dense" Asphalt transitions

- Less traffic jams

Comfort

Safety

- Drivers less tired
- Markings better visible
- Drivers more satisfied

Rijkswaterstaat

October 28, 2018

Improved water and dirt retention: effects

Verge Quality

• Less polluted, because most of pollutants stay in Porous Asphalt (see next slide)

PA Water Drainage

- Reduction of water draianability \rightarrow safety problems
- Loss of noise reduction
- More vulnerable to frost damage

Water longer in asphalt

- Temperature reduction of pavement
- Deterioration of PA material

October 28, 2018

Quality of run off water

Parameter	Rain	Closed road surface (standard asphalt)	Open road surface (porous asphalt)	Open road surface versus closed road surface
Cd	0,2 - 0,5	1 (1 - 5)	0,1 (0,1 - 1)	Circa - 90%
Cr	-	5 (3 – 26)	1 (0,4 - 3)	Circa - 80%
Cu	2,0	121 (11- 163)	40 14.– 107)	Circa - 70%
Ni	0,6	5 (4 - 15)	1 (1 - 9)	Circa - 80%
Pb	4,6	93 (51 – 195)	7 (2 – 34)	Circa - 90%
Zn	15	452 (225 – 530)	47 (18 – 133)	Circa - 90%
РНА	0,4	4 (3,7 - 4,3)	<0,2 (<0,2 - 0,2)	Circa - 95%
Mineral oil (MO)	< 0,1	(3 - 8)	<0,1 (<0,1 - 0,2)	Circa - 95%
Solids undissolved particles	-	187 (153 – 354)	17 (2 - 70)	Circa - 90%

Cleaning to remove dirt

- 2 * per year vacuum cleaner on hard shoulder
- Driven lanes are self cleaning effect due to pumping effect of tyres

PA Water

Drainage

Splash and spray (preventive action)

TUDelft

High numbers of lanes

Emergency stop area

Extra system for water drainage needed

Solutions for urban areas

- PA unsuited for urban areas due to high shear loads
- Other pervious pavement solutions for urban areas:
 - Fast draining from surface
 - Retaining water in structure
- "Water street" is test area in Green Village of TU Delft, mimicking high intensity rainfall to test urban solutions

Rijkswatersta

October 28, 2018

ŤUDelft

Summary

- PA is the standard wearing course on Dutch highways (reason: noise reduction)
- ~ 90% of our highways have silent pavements
- Initial noise reduction single-layer PA16 is 4 dB(A)
 - two-layer PA8 is 6 dB(A) (relative to DAC)
- PA has a long service life comparable with dense asphalt mixes
 - Average service life PA= slow lane 11 years/ fast lane 17 years
 - Average service life TLPA= slow lane 9 years/ fast lane
 13 years
- ravelling is the most important cause of end of service life of PA

Summary

- PA used on 90% of Dutch highways, because of noise reduction, not water permeability
- Average life time PA16(+) is 11 (17), TLPA 9 (13) years
- Laying process is done with conventional machines; no special equipment needed
- A lot of experience all contractors are experts in laying of PA
- PA is more comfortable to drive in wet conditions (splash & spray)
- Water retention and quality of water getting out from PA are better
- With increasing rain fall, advantages of PA increase
- For urban areas other types of pervious pavements are used, developed and tested

